ONE METHOD OF CONSTRUCTING AN

OPERATIONAL CALCULUS

V. A. Ditkin and A. P. Prudnikov

UDC 517.432.1

A method is proposed for constructing an operational calculus, namely, by extending the concept of convolution in certain functional rings.

Let L be the set of all functions defined on the interval $[0, \infty)$ and locally additive within this interval. The convolution of functions f, $g \in L$ will be denoted as

$$f * g = \int_0^t f(t - \xi) g(\xi) d\xi. \tag{1}$$

If the product according to formula (1) is introduced into L and if addition of functions or multiplication by a number are understood in the conventional sense, then L becomes a commutative ring without divisors of zero and may be extended to a field of particular $\mathfrak{M}_{\mathbf{S}}[1]$.

Let ω be a linear operator defined in a linear set L_{ω} and covering a range of values which belong to set L.

We will postulate that

- 1°. $\omega f = 0$ makes f = 0;
- 2°. For all f, g \in L $_{\omega}$ there exists such an element h \in L $_{\omega}$ that

$$\omega f * \omega g = \omega h. \tag{2}$$

Since L_{ω} is a linear set, hence f+g and λf are defined in L_{ω} . If we now introduce the product for all $f,g\in L_{\omega}$, assuming

$$fg = f \cdot g = \omega^{-1} \left(\omega f * \omega g \right) = h, \tag{3}$$

then L_{ω} becomes a commutative ring without divisors of zero. Let l_0 be some fixed element of ring L_{ω} . Let U denote a linear operator defined for all $f \in L_{\omega}$ by the condition

$$Uf = l_0 f. (4)$$

Evidently, for all f, $g \in L_{\omega}$ we have

$$U(fg) = Uf \cdot g = f \cdot Ug. \tag{5}$$

Let M_0 denote the ideal in the ring L_{ω} generated by element l_0 . The elements of ideal M_0 will be denoted by letters F, G, H, \ldots , and numbers will be denoted by $\lambda, \mu, \nu, \ldots$. If $f \in M_0$, then there obviously exists such an element $f \in L_{\omega}$ that

$$F = Uf. (6)$$

For the elements of ideal M_0 we introduce multiplication, assuming that for all F, G $\in M_0$

$$F \otimes G = U^{-1}(FG). \tag{7}$$

The operator U^{-1} here is the reciprocal of U. Such an operator exists, since Uf = 0 makes $\omega^{-1} \cdot (\omega l_0 * \omega f) = 0$ and this, in turn, makes $\omega l_0 * \omega f = 0$. However, $\omega l_0 \neq 0$ ($l_0 \neq 0$) and, therefore, $\omega f = 0$

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 6, pp. 1114-1117, June, 1973. Original article submitted December 20, 1972.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

makes f = 0. We will prove that $F \otimes G \in M_0$. Indeed (see (5) and (6)),

$$F \otimes G = U^{-1}(F \cdot G) = U^{-1}(Uf \cdot Ug) = f \cdot Ug = U(f \cdot g) \in M_0.$$
 (8)

Obviously, the product is commutative, associative, and distributive. Element l_0 does not necessarily belong to ideal M_0 , since ring L_{ω} does not necessarily include unity. For all $F \in M_0$, however, we have

$$F \otimes l_0 = U^{-1}(F \cdot l_0) = U^{-1}(Uf \cdot l_0) = f \cdot l_0 = l_0 \cdot f = Uf = F,$$

$$l_0 \otimes l_0 = U^{-1}(l_0 \cdot l_0) = U^{-1}(Ul_0) = l_0.$$
(9)

Thus, if a product in M_0 is understood in the sense (7) and if addition or multiplication by a number are understood as operations defined in $L_{\omega} \supset M_0$, then M_0 becomes a commutative ring. This ring does not necessarily include unity. If ring M_0 is extended by connecting to it all elements of the form λI_0 (λ is an arbitrary number), then element I_0 in the extended ring M is unity. We will prove that M does not have divisors of zero. Let $F + \lambda I_0 \in M$ and $G + \mu I_0 \in M$, where $F \in M_0$ and $G \in M_0$, for

$$(F + \lambda l_0) \otimes (G + \mu l_0) = 0$$
,

or

$$F \otimes G + \lambda l_0 \otimes G + \mu F \otimes l_0 + \lambda \mu l_0 \otimes l_0 = 0$$
,

or (see (9))

$$F \otimes G + \lambda G + \mu F + \lambda \mu I_0 = 0$$

or (see (5), (6))

$$U(fg) + \lambda Ug + \mu Uf + \lambda \mu I_0 = 0,$$

or (see (4))

$$l_0 f g + \lambda l_0 g + \mu l_0 f + \lambda \mu l_0 = 0.$$

Multiplying both sides of the last equality by l_0 , we obtain

$$l_0 f \cdot l_0 g + \lambda l_0 \cdot l_0 g + \mu l_0 \cdot l_0 f + \lambda l_0 \cdot \mu l_0 = 0,$$

which makes

$$(l_0f + \lambda l_0)(l_0g + \mu l_0) = 0.$$

Since ring L_{ω} has no divisors of zero, hence it follows from the last equality that $l_0 f + \lambda l_0 \neq 0$ if $l_0 g + \mu l_0 = 0$ and from here $G + \mu l_0 = 0$.

Thus, ring M can be extended to the field of particular $\mathfrak{M}\,\omega \mathbf{s}$. Let

$$Ul_0 = l_0 l_0 = \sigma \in M_0, \tag{10}$$

then for F & Mo we have

$$\sigma \otimes F = U^{-1}(\sigma \cdot F) = U^{-1}(Ul_0F) = l_0F = UF. \tag{11}$$

Consequently, operator U in ring M_0 is identical to multiplication by σ . Let

$$\frac{l_0}{\sigma} = \Omega \in \mathfrak{M}_{\omega}. \tag{12}$$

The \mathfrak{M}_{ω} field contains set L_{ω} . One may assume

$$\frac{F}{\sigma} = f$$
, $F = Uf \in M_0$.

In this way,

$$\sigma \otimes f = F = Uf, \quad f \in L_{\alpha}. \tag{13}$$

For $F \in M_0$ we have

$$\Omega F = f = U^{-1}F. \tag{14}$$

We will now prove that \mathfrak{M}_{ω} is isomorphous with some subfield of operator \mathfrak{M} . Let

$$a_1 = \frac{F_1}{G_1} \in \mathfrak{M}_{\omega}, \quad a_2 = \frac{F_2}{G_2} \in \mathfrak{M}_{\omega};$$

where F_1 , G_1 , F_2 , and G_2 belong to M. We map \mathfrak{M}_{ω} into \mathfrak{M} , assuming for all $a = F/G \in \mathfrak{M}_{\omega}$

$$a \to \omega a = \omega F/\omega G \in \mathfrak{M}. \tag{15}$$

Here the operation of division in field $\mathfrak M$ is denoted by the slanted dash /. Let $a_1 = F_1/G_1$ and $a_2 = F_2/G_2$. Then

$$a_1 + a_2 = \frac{F_1}{G_1} + \frac{F_2}{G_2} = \frac{F_1 \otimes G_2 + F_2 \otimes G_1}{G_1 \otimes G_2}, \quad a_1 a_2 = \frac{F_1 \otimes F_2}{G_1 \otimes G_2}.$$

We will now prove that

$$\omega(a_1 + a_2) = \omega a_1 + \omega a_2, \quad \omega(a_1 a_2) = \omega a_1 * \omega a_2. \tag{16}$$

For convenience, we consider first the second of these equalities. By virtue of (11) and (5), we have

$$a_1 a_2 = \frac{F_1 \otimes F_2}{G_1 \otimes G_2} = \frac{\sigma \otimes F_1 \otimes F_2}{\sigma \otimes G_1 \otimes G_2} = \frac{UF_1 \otimes F_2}{UG_1 \otimes G_2} = \frac{U^{-1} (UF_1 F_2)}{U^{-1} (UG_1 G_2)} = \frac{F_1 F_2}{G_1 G_2}.$$

Therefore (see (3)),

$$\omega\left(a_{1}a_{2}\right)=\omega F_{1}F_{2}/\omega G_{1}G_{2}=\omega F_{1}*\omega F_{2}/\omega G_{1}*\omega G_{2}=\omega F_{1}/\omega G_{1}*\omega F_{2}/\omega G_{2}=\omega a_{1}*\omega a_{2}.$$

The first equality in (16) is proved analogously. Operator $a = F/G \in \mathfrak{M}_{\omega}$ will be called Laplace transformable, if operator $\omega a \in \mathfrak{M}$ is Laplace transformable. It is easy to demonstrate that the set of all Laplace transformable operators \mathfrak{M} constitutes a subfield which will be denoted by \mathfrak{N}_{ω} . To every operator $a = F/G \in \mathfrak{N}_{\omega}$ corresponds a function of the complex variable $\bar{a}(p)$, namely

$$a \to \overline{a}(p) = \int_{0}^{\infty} \omega F e^{-pt} dt / \int_{0}^{\infty} \omega G e^{-pt} dt.$$
 (17)

For instance,

$$\Omega \rightarrow \omega \Omega = \omega l_0/\omega \sigma = \omega l_0/\omega l_0 * \omega l_0$$

and if

$$\int\limits_0^\infty \omega l_0 e^{-pt} \, dt,$$

exists, then

$$\overline{\Omega}(p) = \frac{1}{\int\limits_{0}^{\infty} \omega l_{0} e^{-pt} dt}$$
 (18)

It may happen that a product defined according to (3) is meaningful for a larger set of elements than L_{ω} . In this case, and if the ring is extendable, the extended ring may be considered in lieu of L_{ω} .

A simple illustration of the proposed theory would be the case where ω is an idem transformation ($\omega = 1$) and $l_0 = 1$.

Then

$$Uf = \int_{0}^{t} f(u) du$$
, $Ul_{0} = t$, $U^{-1} = \frac{d}{dt}$,

 M_0 is the set of all functions representable in the form

$$F(t) = \int_0^t f(u) du;$$

M is the set of all functions of the form

$$\int_{0}^{t} f(u) du + C, \ f \in L,$$

with an arbitrary constant C, and

$$F \otimes G = \frac{d}{dt} \int_0^t F(t-u) G(u) du;$$

with a classical operational calculus thus having been constructed [1].

We note, in conclusion, that f*g in (1) may be regarded not only as a convolution but also any other product of functions with respect to which the original set constitutes a ring.

LITERATURE CITED

1. V. A. Ditkin and A. P. Prudnikov, Integral Transformations and Operational Calculus [in Russian], Fizmatgiz (1961).